
TPC-DS Benchmark for
Power BI/Direct Lake
(Microsoft Fabric)
January 2024

David Mariani
CTO, Co-Founder,
AtScale

Albert Zhou
Senior Solutions Engineer

INTRODUCTION 2
WHAT IS MICROSOFT FABRIC AND POWER BI/DIRECT LAKE? 2
PURPOSE OF STUDY 3

Why This Benchmark? 3
Key Questions to be Answered 3

1. Is Power BI/Direct Lake a suitable alternative to Import Mode and DirectQuery
for delivering performant queries at a reasonable enterprise data scale? 3
2. Is Power BI/Direct Lake financially viable for organizations of various sizes? 4
3. Is Microsoft Fabric and Power BI/Direct Lake a viable choice as a lakehouse
platform? 4

KEY FINDINGS 5
TESTINGMETHODOLOGY 6

Why TPC-DS Benchmark? 6
TPC-DS Data Schema 6
TPC-DS Queries Used 8
Data and Model Preparation Procedure 10

1. Generate TPC-DS Data, Load in Lakehouse & Create Direct Lake Tables 10
2. Create TPC-DS Semantic Model in Power BI Web 11
3. Create Power BI Report and Reconcile Query Results 12
4. Create JMeter Test Suite 14
5. Run JMeter Test Suite and Capture Results 15

Test Configurations 15
Cost Computations 17

TEST RESULTS - POWER BI 18
Query Performance 18
Query Failures and Their Nature 19
The “Cold Cache” Effect 20

TEST RESULTS - COMPARISONWITH ATSCALE ON SNOWFLAKE 21
Query Performance Comparison 21
Compute Cost Comparison 22
Average Query Time Comparison 23

POWER BI/DIRECT LAKE CONSIDERATIONS 25
1. Lakehouse Limitations 25
2. Semantic Modeling Limitations 26
3. Scalability and Stability 28

CONCLUSION 29

1

Introduction
In the rapidly evolving world of data analytics, the need for robust and efficient Business
Intelligence (BI) tools is paramount. Power BI, a leader in the BI space, is a subject of
interest for many organizations aiming to leverage its capabilities to the fullest. The
introduction of Microsoft's Direct Lake architecture on Fabric presents a new frontier in
this regard. This report provides an in-depth analysis of the TPC-DS Benchmark for
Power BI/Direct Lake. The focus of this benchmark is to critically evaluate Microsoft's
claims about Power BI's enhanced capabilities in the context of scalability,
cost-effectiveness, and manageability.

This paper is organized into sections in order to deliver a holistic understanding of Power
BI's performance on the Direct Lake (Microsoft Fabric) platform. The following sections
examine the following:

1. What is Microsoft Fabric and Power BI/Direct Lake?

2. Purpose of Study

3. Benchmarking Testing Methodology

4. Test Results for Power BI/Direct Lake

5. Comparative Test Results for Power BI/Direct Lake versus AtScale on Snowflake

6. Power BI/Direct Lake Considerations

7. Conclusion

What Is Microsoft Fabric And
Power BI/Direct Lake?
According to Microsoft, “Microsoft Fabric is an all-in-one analytics solution for enterprises
that covers everything from data movement to data science, Real-Time Analytics, and
business intelligence. It offers a comprehensive suite of services, including data lake, data
engineering, and data integration, all in one place.”

Power BI/Direct Lake is a feature within Microsoft's Power BI suite that integrates Power
BI into Microsoft Fabric’s OneLake lakehouse platform. With Power BI/Direct Lake,

2

https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview
https://learn.microsoft.com/en-us/fabric/onelake/onelake-overview

customers can create “semantic models” (datasets) directly from files within the
lakehouse to avoid the need for importing or copying data into Power BI for analysis.

In this paper, we will utilize the TPC-DS industry standard benchmark to evaluate the
suitability for deploying Power BI/Direct Lake to deliver fast, scalable enterprise business
intelligence.

Purpose Of Study
Why This Benchmark?
The benchmark was initiated to test Microsoft's assertion that its Direct Lake architecture
on Fabric is ideally suited for enabling Power BI to offer a direct query experience without
the need for imports. This claim, if validated, positions Power BI as a more agile and
efficient tool in the BI space, especially for organizations dealing with large-scale data.

Key Questions to be Answered
The benchmark focused on three key considerations:

1. Is Power BI/Direct Lake a suitable alternative to Import Mode and
DirectQuery for delivering performant queries at a reasonable enterprise
data scale?

Before Microsoft Fabric and Direct Lake, Power BI offered two distinct methods for
querying data: Import Mode and DirectQuery.

In Import Mode, data is imported and stored within Power BI, allowing for
high-speed analytics and visualizations, but with limitations on data volume and
the need for regular data refreshes.

DirectQuery, on the other hand, leaves the data in its original source, querying it
directly for each report interaction. This method offers real-time insights and
avoids data duplication but can result in slower performance due to the reliance on
the source system's response time.

Microsoft’s solution to delivering the best of both worlds, Power BI/Direct Lake, is
marketed as the “perfect” solution that can deliver both fast and real-time
performance without the need to import data into Power BI, as illustrated in
Microsoft’s diagram below:

3

https://www.tpc.org/tpcds/
https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview

Illustration #1: Power BI/Direct Lake (source)

In this paper, we will set out to test this assertion that Power BI/Direct Lake
(Fabric) can deliver fast queries without the limits of Import Mode and DirectQuery.

2. Is Power BI/Direct Lake financially viable for organizations of various
sizes?

Microsoft Fabric (and Power BI/Direct Lake) have a similar cost profile to Power BI
Premium’s capacity pricing model, Microsoft's enterprise-grade offering for Power
BI. The cost of Microsoft Fabric is determined by the amount of dedicated cloud
resources allocated to an organization, such as CPU, memory, and storage. This
means that pricing is based on the scale and performance needs of the
organization or use case, rather than the number of individual users.

This model can be cost-effective for large organizations with many users, as it
allows unlimited access to Power BI's full suite of tools and services within the
purchased capacity. However, for smaller organizations or those with fewer users,
the cost can be higher on a per-user basis compared to other Power BI offerings.

Understanding the specific data and analytics needs of an organization is crucial in
evaluating whether Power BI Premium's cost profile aligns with its value
proposition. We conducted performance and scalability tests to determine the
limits and scalability factors that drive sizing and costs.

3. Is Microsoft Fabric and Power BI/Direct Lake a viable choice as a
lakehouse platform?

A lakehouse architecture is a relatively new data management strategy that
combines the benefits of data lakes and data warehouses, and aims to provide a

4

https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview

unified platform for both large-scale data storage and advanced analytics. In a
lakehouse, data is stored in a raw, unstructured form similar to a data lake, allowing
for high scalability and flexibility in handling diverse data types and is particularly
beneficial for organizations dealing with massive volumes of data from a variety of
data sources.

The key advantage of a lakehouse architecture is its ability to support both
machine learning and BI workloads. It enables advanced analytics and AI directly
on the raw data without the need for separate data silos or extensive ETL (Extract,
Transform, Load) processes typically associated with traditional data warehouses.

Many cloud-based data platform vendors, including Databricks and Snowflake,
offer tools and services to make a lakehouse architecture work for larger
enterprises. Although not the intent of this paper, we will comment on Microsoft
Fabric’s suitability as a generalized lakehouse platform.

Key Findings
As you will see in the data below, the results of the benchmark reveal some critical
insights that customers need to consider when evaluating whether Power BI/Direct Lake
is a suitable solution for their use cases. In our analysis, we conclude the following:

1. Direct Lake serves as a “lazy load” Import Mode alternative with all the same
drawbacks and limitations as Import Mode

2. Direct Lake is fast on very small data but stumbles with larger data and higher
user concurrency

3. Upon a data or model refresh, Direct Lake creates a substantial “cold cache”
performance hit

4. Power BI Web is missing critical modeling features and is poorly suited for
multi-user collaboration

5. Fabric Lakehouse is not suitable for serving as a general purpose Lakehouse
due to its lack of basic data management features

We will dive into each of these conclusions with specifics and supporting data in the
following sections.

5

https://www.databricks.com/product/data-lakehouse?scid=7018Y000001Fi0MQAS&utm_medium=paid+search&utm_source=google&utm_campaign=20895952536&utm_adgroup=156896743803&utm_content=product+page&utm_offer=data-lakehouse&utm_ad=686162382142&utm_term=databricks%20lakehouse&gad_source=1&gclid=CjwKCAiA1-6sBhAoEiwArqlGPv5RNSs3831IouSvpweM_k8NUVS1bwE6iPNq4Al65D461GgS514SbhoCEFQQAvD_BwE
https://www.snowflake.com/en/data-cloud/snowflake-for-data-lakehouse/

Testing Methodology
Why TPC-DS Benchmark?
The TPC-DS (Transaction Processing Performance Council Decision Support) benchmark
is a widely recognized standard for evaluating the performance of data processing
systems, particularly in the context of decision support systems, which include database
warehouses and big data systems. Designed by the Transaction Processing Performance
Council, the TPC-DS benchmark simulates a decision support system that encompasses
several real-world scenarios, such as customer relationship management, inventory,
sales, and product returns.

One of the key features of the TPC-DS benchmark is its comprehensive set of queries and
data schema that simulates complex and realistic business analytics tasks while testing
the system's ability to process large volumes of data, execute queries of varying
complexity, and handle concurrent data loads and queries. The benchmark measures
performance in terms of query throughput and execution speed, providing a standardized
metric to compare the effectiveness of different hardware and software configurations in
handling decision support workloads.

The TPC-DS is highly regarded for its thoroughness and relevance to real-world business
data operations, making it a critical benchmarking tool for organizations looking to
evaluate and optimize their data processing capabilities.

TPC-DS Data Schema
The table below lists the TPC-DS generated tables and their number of rows used for the
benchmark. In order to evaluate how Power BI/Direct Lake behaved across different data
sizes, we used three data scales for the test: 100GB, 1TB and 10TB.

TPC-DS
TABLE NAME

OF ROWS
(100GB)

OF ROWS
(1TB)

OF ROWS
(10TB)

CALL_CENTER 30 42 54

CATALOG_PAGE 20,400 30,000 40,000

CATALOG_RETURNS 14,404,374 143,996,756 1,440,033,112

6

https://www.tpc.org/tpcds/
https://www.tpc.org/
https://www.tpc.org/

CATALOG_SALES 143,997,065 1,439,980,416 14,399,964,710

CUSTOMER 2,000,000 12,000,000 65,000,000

CUSTOMER_ADDRESS 1,000,000 6,000,000 32,500,000

CUSTOMER_DEMOGRAPHICS 1,920,800 1,920,800 1,920,800

DATE_DIM 73,049 73,049 73,049

HOUSEHOLD_DEMOGRAPHICS 7,200 7,200 7,200

INCOME_BAND 20 20 20

INVENTORY 399,330,000 783,000,000 1,311,525,000

ITEM 204,000 300,000 402,000

PROMOTION 1,000 1,500 2,000

REASON 55 65 70 §

SHIP_MODE 20 20 20

STORE 402 1,002 1,500

STORE_RETURNS 28,795,080 287,999,764 2,879,898,629

STORE_SALES 287,997,024 2,879,987,999 28,800,239,865

TIME_DIM 86,400 86,400 86,400

WAREHOUSE 15 20 25

WEB_PAGE 2,040 3,000 4,002

WEB_RETURNS 7,197,670 71,997,522 720,020,485

WEB_SALES 72,001,237 720,000,376 7,199,963,324

WEB_SITE 24 54 78

Illustration #2: TPC-DS Tables (source)

7

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.6.0.pdf

TPC-DS Queries Used
The TPC-DS benchmark toolset generates a diverse set of complex queries, simulating
real-world decision support systems. For the benchmark testing, we selected a
representative set of 20 queries from the 99 TPC-DS generated query set to keep the run
time and costs of running the benchmarks within reason, without having to downsize data
size. The queries were chosen in no particular order and were selected to eliminate
redundancy and to ensure the usage of most tables.

SPECIAL NOTE:
We had to exclude queries 48, 50, 71 and 88 from the test because Power BI
Direct Lake currently lacks support for Calculated Columns which is required for
these queries. The absence of Calculated Column support also required creating
bespoke DAX calculations for most of the TPC-DS queries since many of the
metrics required specific filtering.

The following 20 TPC-DS queries were selected for the test. The queries highlighted in
red were excluded from the test due to the inability to model them in Power BI/Direct Lake
because of the lack of Calculated Columns support.

TPC-DS
QUERY
NUMBER

TPC-DS QUERY DESCRIPTION

2
Report the ratios of weekly web and catalog sales increases from one year to the next year for each

week. That is, compute the increase of Monday, Tuesday, ... Sunday sales from one year to the
following.

7
Compute the average quantity, list price, discount, and sales price for promotional items sold in

stores where the promotion is not offered by mail or a special event. Restrict the results to a specific
gender, marital and educational status.

13
Calculate the average sales quantity, average sales price, average wholesale cost, total wholesale
cost for store sales of different customer types (e.g., based on marital status, education status)

including their household demographics, sales price and different combinations of state and sales
profit for a given year.

15 Report the total catalog sales for customers in selected geographical regions or who made large
purchases for a given year and quarter.

8

https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview
https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview

26
Computes the average quantity, list price, discount, sales price for promotional items sold through
the catalog channel where the promotion was not offered by mail or in an event for given gender,

marital status and educational status.

31 List counties where the percentage growth in web sales is consistently higher compared to the
percentage growth in store sales in the first three consecutive quarters for a given year.

33
What is the monthly sales figure based on extended price for a specific month in a specific year, for
manufacturers in a specific category in a given time zone. Group sales by manufacturer identifier and

sort output by sales amount, by channel, and give total sales.

42 For each item and a specific year and month calculate the sum of the extended sales price of store
transactions.

48 Calculate the total sales by different types of customers (e.g., based on marital status, education
status), sales price and different combinations of state and sales profit.

50 For each store count the number of items in a specified month that were returned after 30, 60, 90,
120 and more than 120 days from the day of purchase.

52 Report the total of extended sales price for all items of a specific brand in a specific year and month.

53 Find the ID, quarterly sales and yearly sales of those manufacturers who produce items with specific
characteristics and whose average monthly sales are larger than 10% of their monthly sales.

55 For a given year, month and store manager calculate the total store sales of any combination of all
brands.

56
Compute the monthly sales amount for a specific month in a specific year, for items with three

specific colors across all sales channels. Only consider sales of customers residing in a specific time
zone. Group sales by item and sort output by sales amount.

60
What is the monthly sales amount for a specific month in a specific year, for items in a specific
category, purchased by customers residing in a specific time zone. Group sales by item and sort

output by sales amount.

61 Find the ratio of items sold with and without promotions in a given month and year. Only items in
certain categories sold to customers living in a specific time zone are considered.

71 Select the top revenue generating products, sold during breakfast or dinner time for one month
managed by a given manager across all three sales channels.

88

How many items do we sell between specific times of a day in certain stores to customers with one
dependent count and two or less vehicles registered or two dependents with four or fewer vehicles
registered or three dependents and five or less vehicles registered. In one row break the counts into

sales from 8:30 to 9, 9 to 9:30, 9:30 to 10 ... 12 to 12:30

96 Compute a count of sales from a named store to customers with a given number of dependents
made in a specified half-hour period of the day.

9

98 Report on items sold in a given 30-day period, belonging to the specified category.

Illustration #3: TPC-DS Queries Selected for the Test (source)

Data and Model Preparation Procedure
The following section breaks out the steps we took to create the testing framework.

1. Generate TPC-DS Data, Load in Lakehouse & Create Direct Lake Tables

The procedure for generating and loading TPC-DS data for the Power BI/Direct
Lake benchmark begins by running the TPC-DS benchmark tool “dsdgen” to create
the TPC-DS raw CSV files for three distinct scale factors: 100GB, 1TB, and 10TB.
This range of data sizes ensures a comprehensive evaluation of the performance
and scalability across varying levels of data intensity.

We encountered the following difficulties when loading data to Fabric:

1. As of this writing, Fabric Lakehouses do not support schemas for lakehouse
tables. Without the ability to organize tables into separate schemas, it was
necessary to create three separate Fabric Lakehouses for each data size
(100GB, 1TB, 10TB). This drastically complicated the rest of our
benchmarking tasks.

2. Once generated, we loaded the raw TPC-DS files into the Fabric Lakehouse
using one of two methods. For smaller files, we used the built-in Fabric
Lakehouse data uploader, but larger files (i.e. store_sales, catalog_sales,
web_sales) failed with a “too many blocks error”. As a result, for larger files,
we had to employ a two-step process that used the Azure azcopy utility to
first upload the larger files into an ADLS directory after which we then
created Fabric Lakehouse Shortcuts to point to those files.

Once the raw data files were loaded into the Lakehouse, we created a Fabric
Lakehouse notebook to transform the raw TPC-DS files into Lakehouse tables in a
parquet format with the proprietary option of “v-order” enabled, using the
following function:

10

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.6.0.pdf
https://www.tpc.org/tpc_documents_current_versions/download_programs/tools-download-request5.asp?bm_type=TPC-DS&bm_vers=3.2.0&mode=CURRENT-ONLY
https://learn.microsoft.com/en-us/azure/storage/common/storage-ref-azcopy
https://learn.microsoft.com/en-us/fabric/onelake/create-adls-shortcut

Python

def loadData(folder, tableName):

Create the Dataframe

df =
spark.read.format('csv').options(header=True).options(sep='|').options(inferSchema=T
rue).load("Files/" + folder + "/" + tableName + ".csv")

Write to vordered delta

delta_table_path = "Tables/" + tableName

spark.conf.set("spark.sql.parquet.vorder.enabled", "true")

df.write.format("delta").mode("overwrite").option("overwriteSchema",
True).save(delta_table_path)

Count the number of rows

row_count = df.count()

diff = row_count - dic_tpcds_rows[tableName][rows_index]

new_row = {'table': tableName, 'numrows': row_count, 'checksum': diff}

df_stats.loc[len(df_stats)] = new_row

Illustration #4: Python code for creating Direct Lake tables

2. Create TPC-DS Semantic Model in Power BI Web

For modeling the TPC-DS schema in the Power BI/Direct Lake benchmark, we had
to use the Fabric Lakehouse Semantic Model web editor. As of this writing, it is not
possible to use Power BI Desktop to author semantic models in Power BI/Direct
Lake. We set out to create a semantic model that would accommodate the 20
target TPC-DS generated queries we chose for the test.

However, we encountered the following difficulties:

1. We could not model four of the selected queries (Q48, Q50, Q71, Q88)
because Calculated Columns are currently not supported in Power BI/Direct
Lake web modeling experience and these queries require data to be
returned as columns in the result set. As a result, we had to remove and
disqualify these queries from the test.

11

https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview

2. We had to manually create three distinct semantic models for each data
size (100GB, 1TB, 10TB) due to the following:

a. Fabric Lakehouses do not currently support schemas (2 or 3 part
namespaces) as mentioned in Step 1 so we had to create a distinct
Fabric Lakehouse for each data size.

b. Power BI/Direct Lake does not currently allow semantic models to be
shared across Fabric Lakehouses so we had to manually create a
separate semantic model for each of the three Lakehouses.

After the completion of this step, we had three distinct Lakehouses with three
distinct Lakehouse models as you see in the image below:

Illustration #5: Direct Lake Benchmark Workspace

3. Create Power BI Report and Reconcile Query Results

In this step, we re-created the 16 TPC-DS generated SQL queries in a Power BI
report so we could extract each of the DAX queries for our JMeter suite. Using a
1GB version of the semantic model we created above, we defined a table visual for
each of the TPC-DS queries in a Power BI Web workbook, one sheet for each of
the modeled 16 queries.

12

Illustration #6: Power BI Workbook for each TPC-DS Query

We then reconciled each query result against the original TPC-DS SQL queries
from our Snowflake data warehouse. This reconciliation process is key to ensuring
the accuracy and reliability of the Power BI model.

Once data was reconciled, we then downloaded the Power BI Web report as a PBIX
file and opened it in Power BI Desktop, using the Power BI Performance Analyzer to
capture the DAX queries for each of the 16 queries.

13

Illustration #7: Power BI Performance Analyzer

We used this Power BI helper to capture each worksheet’s DAX query which we
then “stringified” using this tool in order to make it suitable as a payload in the
Power BI REST API, executeQueries.

4. Create JMeter Test Suite

For simulating user concurrency and to measure performance and latency in a
controlled testing environment, we chose to use the open-source tool Apache
JMeter to define, execute, and capture the results of our test.

Using the stringified and escaped DAX queries we captured above, we created a
JMeter JMX (Java Management Extensions) test file that calls the Power BI
executeQueries REST API to run each of the 16 queries in 4 concurrency test
scenarios:

1. 1 user/thread (16 queries total)
2. 5 concurrent users/threads (80 total queries)
3. 25 concurrent users/threads (400 total queries)
4. 50 concurrent users/threads (800 total queries)

Additionally, we added a “Constant Throughput Timer” to our JMeter test file (for
Power BI only) in order to keep query requests under the 120 queries per minute
threshold that the executeQueries API enforces. After several attempts, we needed

14

https://onlinestringtools.com/json-stringify-string
https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/execute-queries?tryIt=true&source=docs#code-try-0
https://jmeter.apache.org/
https://jmeter.apache.org/
https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/execute-queries?tryIt=true&source=docs#code-try-0
https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/execute-queries?tryIt=true&source=docs#code-try-0

to throttle our queries to 60 per minute to eliminate throttling errors.

SPECIAL NOTE:
The Power BI REST API enforces a maximum rate of 120 requests per minute. To
avoid throttling errors in our test, we had to throttle the Power BI queries in JMeter
to 60 queries per minute. Since query input is throttled, this may have given Power
BI an unfair advantage under the concurrency tests.

5. Run JMeter Test Suite and Capture Results

To run the JMeter suite, we needed to first generate and capture a user
authentication token. As of this writing, Power BI REST API does not support
service principle tokens. You can generate and capture the token using the
executeQueries API test tool. For our test, we extended the one hour token
expiration using the steps documented here.

Using the command line version of JMeter, we ran each test scenario for all three
data sizes (100GB, 1TB, 10TB) and captured the results using JMeter’s CSV file
output option, and loaded the data into a database for reporting purposes. Using
Tableau, we built each of the visualizations below.

SPECIAL NOTE:
We only throttled queries (1 per second) for Power BI/Direct Lake and not AtScale
on Snowflake. By doing so, we gave Power BI/Direct Lake an advantage over
AtScale on Snowflake by effectively limiting concurrency load for Power BI/Direct
Lake to one query per second maximum.

Test Configurations
Power BI can be purchased using a reserved capacity pricing option or a “pay as you go”
demand-based pricing option which allows the pausing of the capacity to avoid ongoing
charges. Power BI Premium and Microsoft Fabric offer a number of pricing tiers that are
based on different levels of capacity, with higher tiers offering more computing capacity,

15

https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/execute-queries?tryIt=true&source=docs#code-try-0
https://learn.microsoft.com/en-us/entra/identity-platform/configure-token-lifetimes

higher table row limits and memory. For Power BI/Direct Lake, we tested using the trial
capacity level offered during the preview period. The trial capacity (FT1) equates to a
Power BI Premium capacity level of P1 or a Microsoft Fabric capacity level of F64 which
includes 64 capacity units (CUs) and 25GBs or RAM.

Snowflake also charges on a capacity basis using data warehouse capacity sizes (i.e.
Small, Medium, Large, etc.) that equate to an allocation of compute and memory capacity,
counted as “credits”. Snowflake clusters can be configured to automatically pause when
not being used to avoid further charges. For the Snowflake and AtScale on Snowflake
scenarios, warehouse capacity sizes were chosen for each respective data size.

For this benchmark, we used the on-demand pricing option for Power BI capacity to
match the same on-demand pricing model for Snowflake data warehouses. The table
below shows the capacity and Snowflake data warehouse sizes used for each platform:

Vendor Data Size Configuration Compute Cost
per Hour (min)

Power BI/Fabric
All F64/FT1/P1 $12.981 ($.22/min)

TBD2 F256/P3 $51.91 ($.87/min)

AtScale on
Snowflake

100GB Medium (4
credits/hour) $8.00 ($.13/min)

1TB/10TB 1X-Large (16
credits/hour) $32.00 ($.53/min)

Illustration #8: Data Platform Capacity Sizes Used for the Test

SPECIAL NOTE:
For the Power BI/Direct Lake tests, as noted, we used the F64/FT1/P1 trial
capacity level which limits memory to 25GB. We would have preferred to use the
F256/P3 capacity instead which has 100GB of RAM and higher row limits.
However, we were unable to capture results on this capacity level due to the
following error: "You have reached the maximum allowable memory allocation for
your tier. Consider upgrading to a tier with more available memory." As of this
writing, we have an open support ticket with Microsoft to resolve this issue. Upon

16

resolution, we will update our Power BI benchmark results using this larger
capacity level.

For the 10TB data size level that we were able to complete on the F256/P3
capacity, we found that the F256/P3 capacity results were 25% better than the
F64/FT1/P1 capacity results but with the same high degree of query failures and
the same fallback behavior to DirectQuery that we saw in the F64/FT1/P1 trial
capacity level.

Cost Computations
We calculated the compute costs for each platform by multiplying the cumulative
end-to-end run time for each query as reported by JMeter for the concurrency test by the
cluster compute cost per hour like so:

SequentialRunTimeMinutes / 60 * ComputeCostPerHour

The method for measuring compute time is different in this benchmark as compared to
prior AtScale benchmarks. Specifically, each query’s run time was summed as if the
queries were run sequentially, not concurrently. In contrast, prior AtScale benchmarks
measured concurrent run times as simply: end time - start time for the entire suite. This
change was necessary because we had to normalize the effect of Power BI's query
throttling, even though throttling Power BI and not throttling Snowflake may have
benefited Power BI’s results comparatively.

We explicitly excluded storage costs from our calculations. We found that storage cost
was nominal across all platforms and given that it’s a fixed cost, it was not subject to
variation in our testing scenarios.

Test Results - Power BI
Query Performance

17

https://www.atscale.com/resource/re-performance-benchmarks/

We found that Power BI/Direct Lake does well with small data but struggles with larger
data and concurrency, resulting in query timeouts. As you can see in the chart below,
Power BI/Direct Lake performs well for the 100GB data size, but performance and query
timeouts increase dramatically for larger data sizes (1TB, 10TB).

Illustration #9: Power BI/Direct Lake Query Performance by Thread Group

Upon investigation, we found that the 1TB and 10TB data sizes triggered Power BI/Direct
Lake’s “fallback” behavior to DirectQuery due to data either not fitting in memory or tables
exceeding the row limits for the capacity (see Illustration #9 for threshold limits). While
the “fallback” to DirectQuery mode prevented queries from failing outright, customers
should be concerned that query performance may be inconsistent or erratic depending
on data and query profiles. See the “Fallback” section in this Microsoft article for more
information.

18

https://learn.microsoft.com/en-us/power-bi/enterprise/directlake-overview

Query Failures and Their Nature
As you can see in Illustration #9, we experienced a high degree of query failures as data
size and user concurrency increased. Since we were using the Power BI REST API, we
wanted to ensure that the failures were not due to REST API scalability limitations, since
we intended to measure Power BI/Direct Lake engine performance, not API performance.
As you can see in Illustration #10, the majority of query failures were due to query
timeouts with the following message: "The XML for Analysis request timed out before it
was completed. Timeout value: 225 sec."

Illustration #10: Power BI/Direct Lake Query Failures by Type

As of this writing, there is no way of increasing the query timeouts for Power BI/Direct
Lake via the Power BI REST API. However, a query run time of 3 minutes and 45 seconds
is not acceptable for interactive analysis, and increasing timeouts would have negatively
impacted Power BI/Direct Lake results even more.

19

The “Cold Cache” Effect
When semantic models are refreshed, Power BI/Direct Lake shows a noticeable
performance hit as data is loaded in memory. This “cold cache” effect is most acute when
data is small enough to fit in memory. As you can see in Illustration #11, when queries
fallback to DirectQuery mode due to data size or row limits, the “cold cache” effect is less
predictable.

Illustration #11: Power BI/Direct Lake Cold Cache Effect

Customers using Power BI/Direct Lake need to consider cache warming strategies to
mitigate this “lazy load” behavior to avoid a poor end-user experience after a model or
data refresh.

20

Test Results - Comparison with
AtScale on Snowflake
There are alternatives for providing users with a performant, direct query connection in
Power BI without using Power BI/Direct Lake.

AtScale’s semantic layer platform provides a BI tool agnostic option for connecting Power
BI, Excel, Tableau, Looker, and many other tools to cloud data platforms like Snowflake,
Databricks, Google BigQuery, Amazon Redshift, and more. With the AtScale semantic
layer platform, there is no requirement to move data out of your chosen data platform nor
subject Power BI users to a degraded Power BI experience that comes with a DirectQuery
interface.

In this section, we will compare the TPC-DS results of Power BI/Direct Lake with AtScale
on Snowflake.

Query Performance Comparison
As you can see in the charts below, Power BI/Direct Lake is faster than AtScale on
Snowflake for the 100GB data size. However, Power BI/Direct Lake is substantially slower
with query timeouts increasing with data size and concurrency. Furthermore, AtScale on
Snowflake shows a modest, non-linear performance impact as data size increases by 10x
and even 100x.

21

https://www.atscale.com/solutions/universal-semantic-layer/

Illustration #12: Query Performance Comparison of Power BI/Direct Lake and AtScale on Snowflake

Compute Cost Comparison
As you can see in Illustration #13, Power BI/Direct Lake is substantially cheaper at the
100GB data size but much more expensive at larger data sizes and concurrencies. Note
that cost statistics for Power BI/Direct Lake are incomplete due to the high degree of
query timeouts at larger data sizes and concurrencies. If queries were left to complete on
their own, costs and run times would likely have increased even more.

22

Illustration #13: Compute Cost Comparison of Power BI/Direct Lake and AtScale on Snowflake

Average Query Time Comparison
For end users, what matters the most is how fast their visualizations and dashboards
render. In Illustration #14, you can see that Power BI/Direct Lake returns queries in about
500 milliseconds for the 100GB data size - a very good response time.

However, as data gets larger and concurrency increases, average query response times
suffer due to DirectQuery fallback, subjecting users to inconsistent performance that
depends on the size (what fits in memory) and the complexity (number of rows in a table)
of data.

In contrast, while the average query time for AtScale on Snowflake has a floor of 4.4
seconds, query times stay level as data size and user concurrency grow, providing users
with acceptable and consistent interactive performance.

23

Illustration #14: Power BI/Direct Lake & AtScale on Snowflake Average Query Time Comparison

While not an apples-to-apples comparison because Power BI/Direct Lake capacities are
fixed, Illustration #15 shows the average query time for AtScale on a multi-cluster
Snowflake data warehouse. You can see that query times are improved and even more
consistent over the data ranges because Snowflake’s multi-cluster feature reduces query
queuing.

24

Illustration #15: Power BI/Direct Lake & AtScale on Snowflake Average Query Time Comparison for a
Multi-Clustered Snowflake Warehouse

Power BI/Direct Lake
Considerations
While conducting this benchmarking test, we worked closely with the Power BI on the
Microsoft Fabric ecosystem. Overall, while there are some good new features, it appears
that the Microsoft Fabric Lakehouse is purpose-built to provide an alternative to Power BI
Import Mode and Power BI DirectQuery connections. In our experience, we found the
following shortcomings that should be top of mind for those considering Power BI/Direct
lake on Fabric:

1. Lakehouse Limitations

We found that the Microsoft OneLake Fabric Lakehouse is immature and not yet
ready for use as an alternative to platforms like Snowflake or Databricks for the
following reasons:

25

1. Microsoft Fabric Lakehouse only supports a single part namespace for
tables. Although the lakehouse supports file directories, lakehouse tables,
which are required for Direct Lake, cannot be organized into catalogs or
schemas (a 3-part namespace would be catalog/schema/table). Since we
had three data sizes (100GB, 1TB, 10TB), we had to create three separate
lakehouses and three separate semantic models. In our opinion, forcing
users to store all their tables in one location is not suitable for enterprise
use cases.

2. In order to make Power BI/Direct Lake performant, we needed to duplicate
data already in ADLS in a Microsoft proprietary format (“v-order”). Besides
data duplication, the requirement to create proprietary tables required extra
data engineering to load and format the data. If the Microsoft Fabric
Lakehouse was suitable for use as a general purpose lakehouse, this may
not be a big issue since these tables may be useful across multiple use
cases. However, given OneLake’s current limitations and lack of integration
with non-Azure tools, most organizations will need to add another layer of
data processing to make PowerBI/Direct Lake work.

3. OneLake lacks integration support for tooling outside of Azure. Over time,
we expect that OneLake will become more ecosystem friendly. However, as
of this writing, integration with other data platforms like Databricks is
limited to sharing files via ADLS through Fabric Shortcuts. This means that
data cataloging and governance features like Databricks Unity Catalog are
not yet supported.

2. Semantic Modeling Limitations

As of this writing, Microsoft Fabric’s new web-based modeling tool is required to
create semantic models that take advantage of Direct Lake. The new web-based
modeling experience introduces several feature gaps compared to Power BI
Desktop. For example, we encountered the following shortcomings in the Direct
Lake semantic modeling experience:

1. No support for Calculated Columns. For many models, including TPC-DS, it
is sometimes necessary to create calculations when defining a dimension.
For example, in the TPC-DS model, we needed to create a “sales price tier”
for some of the queries that look like this (in SQL):

26

https://learn.microsoft.com/en-us/fabric/data-engineering/delta-optimization-and-v-order?tabs=sparksql
https://learn.microsoft.com/en-us/fabric/onelake/onelake-shortcuts
https://www.databricks.com/product/unity-catalog

Unset

CASE WHEN "SS_SALES_PRICE" > 200 THEN '200 and More'

WHEN "SS_SALES_PRICE"BETWEEN 150 AND 200 THEN '150-200'

WHEN "SS_SALES_PRICE" BETWEEN 100 AND 150 THEN '100-150'

WHEN "SS_SALES_PRICE" BETWEEN 50 AND 100 THEN ' 50-100'

ELSE ' 50 and Less' END

Illustration #16: Sales Price Tier Calculated Column (SQL)

In Power BI Desktop, this feature is available, but, as of this writing, it is not
available in Power BI’s Web modeling experience. As a result, this forced us
to disqualify 4 (out of 20) TPC-DS queries for our test. Customers should
consider this a serious shortcoming, especially if they have existing models
defined in Power BI Desktop that require Calculated Columns.

2. No way to share models or modeling components with other modelers.
Power BI Web modeling experience does not currently offer the ability to
create or use a library of shared modeling components, like dimensions,
metrics, and calculations. For our use case, due to the lakehouse
namespace limitation, this required that we manually re-create semantic
models which was a manual, error prone process.

3. No way to edit a Power BI Semantic Model outside the web-based
workspace. Power BI Desktop is a richer modeling experience than the
Power BI web-based modeler, but once a model is edited in Power BI
Desktop, or the third-party tool, Tabular Editor, or has its properties
changed in SSMS, it is no longer editable in the Power BI web-based
interface (see below).

27

https://tabulareditor.com/
https://learn.microsoft.com/en-us/power-bi/enterprise/service-premium-connect-tools

Illustration #17: Power BI/Direct Lake Web Modeler After Editing in Tabular Editor or
SSMS

This made creating and editing our models difficult and once we did save a
model outside of Power BI Web, our model became inaccessible.

3. Scalability and Stability

As you can see in Illustrations #14 and #15, Power BI/Direct Lake performs well for
small data - 100GB in our case. However, once a dataset exceeded Direct Lake
capacity limits (i.e. memory, number of rows, etc.), the fallback to DirectQuery
made the experience inconsistent and unstable.

For example, queries timed out at 1TB & 10TB data levels in large numbers - up to
49% of queries timed out at the 10TB level. In addition, even at the 100GB level, a
handful of queries failed when concurrency hit the 50 users. During our tests, we
also encountered locking errors ("The operation was canceled because of locking
conflicts.") when working on the model and querying at the same time.

28

Conclusion
The TPC-DS Benchmark for Power BI/Direct Lake presents a mixed picture. While there
are areas where Power BI/Direct Lake shows promise, particularly with smaller datasets, it
faces significant challenges in scalability, cost efficiency, and handling large-scale,
concurrent data operations. The comparison with AtScale on Snowflake further highlights
these gaps. Organizations considering Power BI/Direct Lake should carefully evaluate
their data and operational needs to ensure that Power BI/Direct Lake can deliver results
now and into the future.

29

